Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2134, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273006

RESUMEN

This study investigated the effects of supplementation of low-temperature probiotics isolated from the intestines of olive flounder on the growth performance, digestibility, and regulation of intestinal microbiota and the expression of genes related to growth, immunity, and apoptosis in olive flounder. Bacteria showing high growth at approximately 15-20 °C, which is the temperature of olive flounder culture, were isolated and confirmed to be Pseudomonas species through 16S rRNA gene sequence analysis. Whole-genome sequencing revealed that the strain has a 6,195,122 bp single circular chromosome and a guanine-cytosine content of 59.9%. In the feeding trial, supplementation with 1 × 108 CFU/g of the isolate strain positively modulated growth performances, digestive enzyme activity, and gut microbiota composition of olive flounder. RT-qPCR for the comparison of growth, immunity, and apoptosis-related gene expression levels showed no significant differences between the groups. Therefore, the isolated host-associated low-temperature probiotics improved the growth performance of olive flounder by causing positive changes in digestive activity and intestinal microbial composition without affecting host gene expression.


Asunto(s)
Enfermedades de los Peces , Lenguado , Probióticos , Animales , Acuicultura , Enfermedades de los Peces/microbiología , Probióticos/farmacología , ARN Ribosómico 16S/genética , Temperatura
2.
Biology (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998042

RESUMEN

Two novel strains of Rummeliibacillus sp. and Microbacterium sp. were identified from the intestine of olive flounder (Paralichthys olivaceus) and characterized in vitro as potential probiotics. Feeds without probiotic and with a 50:50 mixture of these two strains (1 × 108 CFU/g feed) were denoted as the control and Pro diets, respectively. Three randomly selected tanks (20 flounders/tank, ~11.4 g each) were used for each diet replication. After 8 weeks of feeding, the growth and feed utilization of the flounder in the Pro group improved (p < 0.05) compared to the control. Among four immune parameters, only myeloperoxidase activity was elevated in the Pro group. Serum biochemistry, intestinal microbial richness (Chao1), and diversity (Shannon index) remained unchanged (p ≥ 0.05), but phylogenetic diversity was enriched in the Pro fish intestine. Significantly lower Firmicutes and higher Proteobacteria were found in the Pro diet; the genus abundance in the control and Pro was as follows: Staphylococcus > Lactobacillus > Corynebacterium and Lactobacillus > Staphylococcus > Corynebacterium, respectively. Microbial linear discriminant scores and a cladogram analysis showed significant modulation. Therefore, the combination of two host-associated probiotics improved the growth and intestinal microbial population of flounder and could be supplemented in the Korean flounder industry.

3.
PLoS One ; 18(11): e0287944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37939069

RESUMEN

Tilapia Lake Virus (TiLV) is a disease that affects tilapia fish, causing a high rate of sudden death at any stage in their life cycle. Unfortunately, there are currently no effective antiviral drugs or vaccines to prevent or control the progression of this disease. Researchers have discovered that the CRM1 protein plays a critical function in the development and spreading of animal viruses. By inhibiting CRM1, the virus's spread in commercial fish farms can be suppressed. With this in mind, this study intended to identify potential antiviral drugs from two different tropical mangrove plants from tropical regions: Heritiera fomes and Ceriops candolleana. To identify promising compounds that target the CRM1 protein, a computer-aided drug discovery approach is employed containing molecular docking, ADME (absorption, distribution, metabolism and excretion) analysis, toxicity assessment as well as molecular dynamics (MD) simulation. To estimate binding affinities of all phytochemicals, molecular docking is used and the top three candidate compounds with the highest docking scores were selected, which are CID107876 (-8.3 Kcal/mol), CID12795736 (-8.2 Kcal/mol), and CID12303662 (-7.9 Kcal/mol). We also evaluated the ADME and toxicity properties of these compounds. Finally, MD simulation was conducted to analyze the stability of the protein-ligand complex structures and confirm the suitability of these compounds. The computational study demonstrated that the phytochemicals found in H. fomes and C. candolleana could potentially serve as important inhibitors of TiLV, offering practical utility. However, further in vivo investigations are necessary to investigate and potentially confirm the effectiveness of these compounds as antiviral drugs against the virus TiLV.


Asunto(s)
Fármacos Anti-VIH , Enfermedades de los Peces , Tilapia , Virus , Animales , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Enfermedades de los Peces/tratamiento farmacológico , Diseño de Fármacos , Simulación de Dinámica Molecular
4.
J Microbiol Biotechnol ; 33(10): 1390-1401, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37463868

RESUMEN

In this study, a 12-week feeding experiment was conducted to characterize the effects of exogenous α-amylase on the growth, feed utilization, digestibility, plasma α-amylase activity, feed degradation rate, and fecal particle size of olive flounder (Paralichthys olivaceus). Diet was supplemented with 0 (AA0; control), 100 (AA100), 200 (AA200), or 400 (AA400) mg/kg of α-amylase, respectively. Fish (273.1 ± 2.3 g) were stocked into 12 tanks (25 fish/1,000-L tank) and 3 tanks were randomly selected for each diet group. As a result, α-amylase was found to have no significant effects (p ≥ 0.05) on the growth, feed utilization parameters, and whole-body proximate compositions. α-Amylase-treated fish exhibited only a significant increase in the apparent digestibility coefficient of carbohydrates compared to the controls. In addition, in vitro analyses revealed that α-amylase dose-dependently increased (p < 0.05) the feed degradation rate, while photographs of the intestinal content after 2, 4, and 8 h of feeding demonstrated an improved degradation rate in the α-amylase-treated groups. Plasma α-amylase content was higher in the AA200 and AA400 groups, whereas the control group produced significantly larger-sized fecal particles (90% size class) than these two groups. In the intestine, no changes were observed in the expression levels of the immune-related TNF-α, IL-1ß, IL-2, immunoglobulin-M, HSP-70, lysozyme, and amylase alpha-2A. However, growth-related genes IGF-1, IGF-2, TGF-ß3, and growth hormone genes were upregulated in muscle tissues. Collectively, exogenous α-amylase has positive roles in the modulation of the digestibility coefficient, blood α-amylase concentration, growth-related gene expression, and diet degradation for improved digestion in olive flounder.


Asunto(s)
Lenguado , Animales , Inmunidad Innata , alfa-Amilasas , Dieta/veterinaria , Nutrientes , Expresión Génica , Alimentación Animal/análisis
5.
Front Microbiol ; 13: 979124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118225

RESUMEN

A 6-month feeding trial was conducted to compare the effects of extruded pellet (EP) and moist pellet (MP) feed on the growth performance, non-specific immunity, and intestinal microbiota of olive flounder. A total of 60,000 fish with an average weight of 70.8 ± 6.4 g were divided into two groups and fed with one of two experimental diets. At the end of a 6-month feeding trial, the weight gain and specific growth rate of the fish fed with the MP diets were significantly higher than those of fish fed with EP (P < 0.05). However, the EP group exhibited a lower feed conversion rate than the MP group, meaning that the EP diet was more cost-effective. Whole-body proximate compositions and non-specific immune responses (superoxide dismutase, myeloperoxidase, and lysozyme activity) were not significantly different between the two groups. There were no significant differences in the α-diversity of the intestinal bacterial community of the two groups. However, the composition of microorganisms at the phylum to genus level was different between the groups. The EP group was rich in Actinobacteria, Corynebacterium, Bacillus, and Lactobacillus, whereas the MP group was dominated by Proteobacteria, Vibrio, and Edwardsiella. Collectively, the MP diet increased growth performance and pathogen concentration in the gut; whereas EP improved feed conversion and beneficial Bacillus and Lactobacillus proportion in the intestinal microbial community.

6.
Front Immunol ; 13: 960554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935938

RESUMEN

A 56-day feeding trial was conducted to determine the effect of dietary supplementation with Bacillus sp. isolated from the intestines of red sea bream on the growth performance, immunity, and gut microbiome composition of red sea bream. Three diets (a control diet and two treatments) were formulated without Bacillus sp. PM8313 or ß-glucan (control, CD), 1 × 108 CFU g-1 PM8313 (BSD), and 1 × 108 CFU g-1 PM8313 + 0.1% ß-glucan (BGSD). At the end of the experiment, the weight, specific growth rate, feed conversion ratio, and protein efficiency ratio of the fish in the BSD and BGSD diet groups were significantly improved than those of the control group (P < 0.05). Additionally, amylase and trypsin activities were significantly higher (P < 0.05) in both groups compared to the control. Superoxide dismutase and lysozyme activity, which are serum non-specific immune responses, only increased in the BGSD group. The two treatment groups exhibited a marked difference in the intestinal microbiota composition compared to the control group. Furthermore, the treatment groups exhibited an upregulation of IL-6 and NF-κb, coupled with high survival rates when challenged with Edwardsiella tarda. Therefore, dietary supplementation with PM8313 improved the growth performance, digestive enzyme activity, non-specific immunity, and pathogen resistance of red sea bream, in addition to affecting the composition of its intestinal microflora.


Asunto(s)
Bacillus , Microbioma Gastrointestinal , Perciformes , Dorada , beta-Glucanos , Animales , Alimentación Animal/análisis , beta-Glucanos/farmacología , Suplementos Dietéticos/análisis , Resistencia a la Enfermedad
7.
J Microbiol Biotechnol ; 32(6): 681-698, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35722672

RESUMEN

The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.


Asunto(s)
Carpas , Oncorhynchus mykiss , Probióticos , Alimentación Animal/análisis , Animales , Acuicultura , Resistencia a la Enfermedad , Oncorhynchus mykiss/microbiología , Probióticos/farmacología
8.
Fish Shellfish Immunol ; 119: 182-192, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607010

RESUMEN

The purpose of this study was to characterize the bacteria isolated from rockfish intestines and to investigate the effects of feed supplementation in rockfish aquaculture. Bacillus sp. KRF-7 isolated from the intestine of rockfish (Sebastes schlegelii) was demonstrated to be safe based on in vitro tests confirming the absence of hemolysis, cytotoxicity, and genes with toxigenic potential. In a feeding trial, providing a supplemental diet of 1 × 108 CFU g-1Bacillus sp. KRF-7 was observed to positively alter the weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio of juvenile rockfish. KRF-7 supplementation showed positive regulation of nonspecific immune parameters, such as superoxide dismutase, lysozyme activity, and myeloperoxidase activity. This analysis also revealed a change in the composition of the intestinal microbiota at the phylum level from Proteobacteria to Firmicutes. In both the kidney and spleen, the expression levels of IL-10, NF-κB, and B cell activating factors in the KRF-7-supplemented group were significantly increased compared to those in the control group. Therefore, this study verified the safety of KRF-7 isolated from the intestine of rockfish and suggests that dietary supplementation with KRF-7 enhances the growth performance of rockfish and has beneficial effects on the regulation of the intestinal microbiota and immune response.


Asunto(s)
Bacillus , Lubina , Probióticos , Alimentación Animal/análisis , Animales , Acuicultura , Dieta/veterinaria , Suplementos Dietéticos , Intestinos , Mananos , Oligosacáridos
9.
Aquaculture ; 541: 736783, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33883784

RESUMEN

Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.

10.
Probiotics Antimicrob Proteins ; 13(5): 1277-1291, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33713023

RESUMEN

Experiments were conducted to identify different ratios of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 mixtures at a concentration of 1 × 108 CFU/g diet; the effects on growth and cellular and humoral immune responses and the characteristics of disease protection in olive flounder (Paralichthys olivaceus). Flounder were divided into six groups and fed control diet D-1 (without Bacillus sp. SJ-10 and L. plantarum KCCM 11322), positive control diets D-2 (Bacillus sp. SJ-10 at 1 × 108 CFU/g feed) and D-3 (L. plantarum KCCM 11322 at 1 × 108 CFU/g feed); or treatment diets D-4 (3:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.75 + 0.25 × 108 CFU/g feed), D-5 (1:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.50 + 0.50 × 108 CFU/g feed), or D-6 (1:3 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.25 + 0.75 × 108 CFU/g feed) for 8 weeks. Group D-4 demonstrated better growth and feed utilization (P < 0.05) compared with the controls and positive controls. Similar modulation was also observed in respiratory burst for all treatments and in the expression levels of TNF-α, IL-1ß, IL-6, and IL-10 in different organs in D-4. D-4 and D-5 increased respiratory burst, superoxide dismutase, lysozyme, and myeloperoxidase activities compared with the controls, and only D-4 increased microvilli length. When challenged with 1 × 108 CFU/mL Streptococcus iniae, the fish in the D-4 and D-5 groups survived up to 14 days, whereas the fish in the other groups reached 100% mortality at 11.50 days. Collectively, a ratio-specific Bacillus sp. SJ-10 and L. plantarum KCCM 11322 mixture (3:1) was associated with elevated growth, innate immunity, and streptococcosis resistance (3:1 and 1:1) compared with the control and single probiotic diets.


Asunto(s)
Bacillus , Suplementos Dietéticos , Lenguado , Inmunidad Humoral , Lactobacillus plantarum , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Lenguado/crecimiento & desarrollo , Lenguado/inmunología
11.
Pathogens ; 10(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572193

RESUMEN

Using synthetic antibiotics/chemicals for infectious bacterial pathogens and parasitic disease control causes beneficial microbial killing, produces multi-drug resistant pathogens, and residual antibiotic impacts in humans are the major threats to aquaculture sustainability. Applications of herbal products to combat microbial and parasitic diseases are considered as alternative approaches for sustainable aquaculture. Essential oils (EOs) are the secondary metabolites of medicinal plants that possess bioactive compounds like terpens, terpenoids, phenylpropenes, and isothiocyanates with synergistic relationship among these compounds. The hydrophobic compounds of EOs can penetrate the bacterial and parasitic cells and cause cell deformities and organelles dysfunctions. Dietary supplementation of EOs also modulate growth, immunity, and infectious disease resistance in aquatic organisms. Published research reports also demonstrated EOs effectiveness against Ichthyophthirius multifiliis, Gyrodactylus sp., Euclinostomum heterostomum, and other parasites both in vivo and in vitro. Moreover, different infectious fish pathogenic bacteria like Aeromonas salmonicida, Vibrio harveyi, and Streptococcus agalactiae destruction was confirmed by plant originated EOs. However, no research was conducted to confirm the mechanism of action or pathway identification of EOs to combat aquatic parasites and disease-causing microbes. This review aims to explore the effectiveness of EOs against fish parasites and pathogenic bacteria as an environment-friendly phytotherapeutic in the aquaculture industry. Moreover, research gaps and future approaches to use EOs for sustainable aquaculture practice are also postulated.

12.
Res Vet Sci ; 131: 177-185, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32388020

RESUMEN

Heat-killed (HK) Bacillus sp. SJ-10 (B), HK Lactobacillus plantarum (P), and their combination were dietary supplemented to olive flounder (Paralichthys olivaceus) to quantify the effects on growth, innate immunity, and disease resistance. Four test diets were supplied: a control feed free of HK probiotics, 1 × 108 CFUs g-1 single treatments of each of HK B (HKB) and HK P (HKP), and an equal proportion of (0.5 HKB + 0.5 HKP) × 108 CFUs g-1 (HKB0.5 HKP0.5). At 8 weeks of completion feeding trail, HKB0.5 HKP0.5 significantly (P < .05) improved growth, feed utilization, and nonspecific immune parameters (respiratory burst and superoxide dismutase) compared to the control group. Similarly, serum lysozyme and myeloperoxidase activities were higher in both HKB and HKB0.5HKP0.5 groups. The levels of pro-inflammatory cytokine IL-6 in the liver and IL-1ß in the liver, kidney, and spleen were also improved in the treatments, but microvilli length was only increased in HKB0.5HKP0.5. After Streptococcus iniae 1 × 108 CFUs mL-1 challenged; HKB and HKB0.5HKP0.5 had a higher survival than control and HKP. Overall, dietary administration of synergy HK probiotics elevated growth, cellular and humoral immunity, and streptococcosis resistance in olive flounder.


Asunto(s)
Bacillus , Dieta/veterinaria , Lenguado , Lactobacillus plantarum , Probióticos/farmacología , Animales , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Suplementos Dietéticos , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Celular/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Infecciones Estreptocócicas/inmunología , Streptococcus iniae
13.
Front Mol Biosci ; 7: 585899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569389

RESUMEN

A new strain of coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic was first detected in the city of Wuhan in Hubei province, China in late December 2019. To date, more than 1 million deaths and nearly 57 million confirmed cases have been recorded across 220 countries due to COVID-19, which is the greatest threat to global public health in our time. Although SARS-CoV-2 is genetically similar to other coronaviruses, i.e., SARS and Middle East respiratory syndrome coronavirus (MERS-CoV), no confirmed therapeutics are yet available against COVID-19, and governments, scientists, and pharmaceutical companies worldwide are working together in search for effective drugs and vaccines. Repurposing of relevant therapies, developing vaccines, and using bioinformatics to identify potential drug targets are strongly in focus to combat COVID-19. This review deals with the pathogenesis of COVID-19 and its clinical symptoms in humans including the most recent updates on candidate drugs and vaccines. Potential drugs (remdesivir, hydroxychloroquine, azithromycin, dexamethasone) and vaccines [mRNA-1273; measles, mumps and rubella (MMR), bacille Calmette-Guérin (BCG)] in human clinical trials are discussed with their composition, dosage, mode of action, and possible release dates according to the trial register of US National Library of Medicines (clinicaltrials.gov), European Union (clinicaltrialsregister.eu), and Chinese Clinical Trial Registry (chictr.org.cn) website. Moreover, recent reports on in silico approaches like molecular docking, molecular dynamics simulations, network-based identification, and homology modeling are included, toward repurposing strategies for the use of already approved drugs against newly emerged pathogens. Limitations of effectiveness, side effects, and safety issues of each approach are also highlighted. This review should be useful for the researchers working to find out an effective strategy for defeating SARS-CoV-2.

14.
Fish Shellfish Immunol ; 97: 268-282, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31863903

RESUMEN

Aquaculture and fisheries have provided protein sources for human consumption for a long time, but diseases have induced declines in product benefits and raised concerns, resulting in great losses to these industries in many countries. The overuse of antibiotics for the treatment of diseases has increased the chemical concentrations in culture systems and weakened the natural immunity of aquatic organisms. Concerns regarding the detrimental effects of antibiotics on the environment and human health due to residual antibiotic-related issues encourage the development of reliable, environmental and health safety methods, such as vaccines, probiotics, prebiotics, synbiotics and phytobiotics, for protection against disease and for reducing and possibly eliminating disease occurrence. Immunity has been effectively enhanced by pro-, pre-, and synbiotics, which confer strong protection and reduce the risks associated with stressors and disease outbreaks in culture systems. These agents confer several benefits, including enhancing both host growth and immune responses against pathogens, while sustaining health and environmental stability, and their use is thus widely accepted. Alterations in gene expression in individual cells could serve as an indicator of the immunity and growth rate of aquatic animals after pro-, pre- and synbiotic feeding. This review addresses the potential use of pro, pre- and synbiotics as immunostimulants for improved aquaculture management and environmental health and chronicles the recent insights regarding the application of pro-, pre- and synbiotics with special emphasis on their immunomodulatory and antioxidative responses based on gene expression changes. Furthermore, the current review describes the research gaps and other issues that merit further investigation.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Prebióticos , Probióticos/farmacología , Simbióticos , Transcriptoma , Acuicultura , Organismos Acuáticos
15.
Int. microbiol ; 22(4): 501-509, dic. 2019. ilus, graf, tab
Artículo en Inglés | IBECS | ID: ibc-185068

RESUMEN

Singleplex and duplex loop-mediated isothermal amplification (LAMP) assays were developed for detecting Vibrio anguillarum, a major bacterial pathogen of fish, and Vibrio alginolyticus, a pathogen of fish and humans, separately and simultaneously from contaminated seawater by targeting the groEL gene of V. anguillarum, which encodes a molecular chaperone protein, and the fklB gene of V. alginolyticus, which encodes a 22 kilodalton (kDa) peptidyl prolyl isomerase. The optimal reaction conditions to produce consistent results were 65°C for 30 min, 63°C for 30 min, and 63°C for 40 min for the groEL (singleplex for V. anguillarum), fklB (singleplex for V. alginolyticus), and groEL + flkB (duplex) LAMP assays, respectively, analyzed via visual detection methods (use of calcein, and SYBR Green I) and agarose gel electrophoresis. The assays were found to be species-specific, as closely related Vibrio spp. were not detected. The limits of detection (LoDs) of the LAMP assays for DNA template from pure culture and artificially contaminated seawater were 10 and 14 fg (groEL assay; for V. anguillarum), 12.5 and 17 fg (fklB assay; for V. alginolyticus), and 50 and 70 fg (duplex assay) per reaction, respectively, which were much better than the LoDs of conventional polymerase chain reaction (PCR). Singleplex and duplex LAMP assays were found to be rapid, species-specific, and sensitive for the detection of V. anguillarum and V. alginolyticus and are applicable to laboratory and field diagnostics


No disponible


Asunto(s)
Humanos , Animales , Vibrio alginolyticus/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Vibrio/química , Vibrio/crecimiento & desarrollo , Peces/microbiología , Agua de Mar/análisis , Agua de Mar/microbiología , Reacción en Cadena de la Polimerasa
16.
Fish Shellfish Immunol ; 92: 719-727, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31271838

RESUMEN

The aim of this study was to investigate the effects of intestinal microbial manipulation by dietary probiotic supplementation on digestive enzyme activity, immune-related gene transcription, intestinal structure alteration, and viability against pathogenic challenge in olive flounder. Similar-sized flounders (14.92 ±â€¯0.21 g) were divided into three groups and supplemented with a control (without probiotic) or 1 × 108 CFU/g diet of each of Bacillus sp. SJ-10 (ProB) and Lactobacillus plantarum (ProL) for eight weeks. At the end of the feeding trial, the estimated intestinal microbial richness (Chao1) and diversity (Shannon) demonstrated a significant (P < 0.05) abundance in the ProB group (484.80 ±â€¯88.75, 5.08 ±â€¯0.17) compared to the ProL (285.32 ±â€¯17.78, 4.54 ±â€¯0.09) and control groups (263.23 ±â€¯20.20, 4.30 ±â€¯0.20). A similar alteration phenomenon was also found at the phylum level, with a higher abundance of Proteobacteria, Actinobacteria, and Acidobacteria. Trypsin and lipase activities were elevated in both the ProB and ProL groups compared to the control, but amylase was only higher in the ProB group. The expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 were significantly higher in the ProB group than in the other two groups. There was a significant increase in transcription of IL-10 in both the ProB and ProL groups compared to the control. The length of villi and microvilli of probiotic-fed olive flounder was increased but was not significantly different from the control group. In an in vivo challenge experiment with Streptococcus iniae (1 × 108 CFU/mL), the survival rates of the ProB and ProL groups were 29.17% and 12.50%, respectively, when control mortality reached 100%. Therefore, intestinal microbiota manipulation by probiotic supplementation increased the richness of the bacterial population, digestive enzyme activity, intestinal immune gene transcription, and infectious disease protection in olive flounder.


Asunto(s)
Digestión/efectos de los fármacos , Peces Planos/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Proteínas de Vegetales Comestibles/administración & dosificación , Probióticos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Dieta/veterinaria , Peces Planos/anatomía & histología , Peces Planos/microbiología , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Intestinos/enzimología , Intestinos/microbiología , Probióticos/administración & dosificación
17.
Int Microbiol ; 22(4): 501-509, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31098824

RESUMEN

Singleplex and duplex loop-mediated isothermal amplification (LAMP) assays were developed for detecting Vibrio anguillarum, a major bacterial pathogen of fish, and Vibrio alginolyticus, a pathogen of fish and humans, separately and simultaneously from contaminated seawater by targeting the groEL gene of V. anguillarum, which encodes a molecular chaperone protein, and the fklB gene of V. alginolyticus, which encodes a 22 kilodalton (kDa) peptidyl prolyl isomerase. The optimal reaction conditions to produce consistent results were 65 °C for 30 min, 63 °C for 30 min, and 63 °C for 40 min for the groEL (singleplex for V. anguillarum), fklB (singleplex for V. alginolyticus), and groEL + flkB (duplex) LAMP assays, respectively, analyzed via visual detection methods (use of calcein, and SYBR Green I) and agarose gel electrophoresis. The assays were found to be species-specific, as closely related Vibrio spp. were not detected. The limits of detection (LoDs) of the LAMP assays for DNA template from pure culture and artificially contaminated seawater were 10 and 14 fg (groEL assay; for V. anguillarum), 12.5 and 17 fg (fklB assay; for V. alginolyticus), and 50 and 70 fg (duplex assay) per reaction, respectively, which were much better than the LoDs of conventional polymerase chain reaction (PCR). Singleplex and duplex LAMP assays were found to be rapid, species-specific, and sensitive for the detection of V. anguillarum and V. alginolyticus and are applicable to laboratory and field diagnostics.


Asunto(s)
Proteínas Bacterianas/genética , Chaperonina 60/genética , Enfermedades de los Peces/microbiología , Técnicas de Amplificación de Ácido Nucleico/métodos , Vibriosis/microbiología , Vibriosis/veterinaria , Vibrio/aislamiento & purificación , Animales , Enfermedades de los Peces/diagnóstico , Humanos , Vibrio/genética , Vibriosis/diagnóstico , Vibrio alginolyticus/clasificación , Vibrio alginolyticus/genética
18.
Fish Shellfish Immunol ; 88: 424-431, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30872030

RESUMEN

Investigations were carried out to evaluate and quantify the effects of dietary supplementation with heat-killed (HK) Bacillus sp. SJ-10 (BSJ-10) probiotic (1 × 108 CFU g-1) on the growth and immunity of olive flounder (Paralichthys olivaceus). Flounder (averagely 9.64 g) were divided into two groups, and fed control and HK BSJ-10 (HKBSJ-10)-inoculated diets for 8 weeks. Investigations were carried out on growth and feed utilizations, innate immunity, serum biochemical parameters, microvilli length, and pro- and anti-inflammatory cytokine gene (tumor necrosis factor [TNF]-α, interleukin [IL]-1ß, IL-6, and IL-10) transcriptions. Compared to control, HKBSJ-10 diet significantly (P < 0.05) enhanced weight gain and protein efficiency ratio, 1.17 and 1.11 folds respectively. Humoral innate immune parameters, lysozyme and superoxide dismutase in treatment group were also elevated by 1.34 and 1.16 folds. Similarly, an increased (P < 0.05) relative expressions of TNF-α, IL-1ß, IL-6 were recorded in liver (2.71, 3.38, and 4.12 folds respectively), and gill (2.08, 1.98, and 1.81 folds respectively) than that of controls. Moreover, after challenge with Streptococcus iniae (1 × 108 CFU mL-1), the HKBSJ-10-fed group exhibited significantly higher protection (P < 0.05) against streptococcosis compared to controls, validating the observed changes in immune parameters and induction on the cytokine-encoding genes. Therefore, HKBSJ-10 increases growth, modulates innate immune parameters, and protects olive flounders against streptococcosis.


Asunto(s)
Bacillus , Enfermedades de los Peces/prevención & control , Lenguado/crecimiento & desarrollo , Lenguado/inmunología , Inmunidad Innata , Probióticos/administración & dosificación , Infecciones Estreptocócicas/veterinaria , Alimentación Animal/microbiología , Animales , Citocinas/inmunología , Suplementos Dietéticos/microbiología , Resistencia a la Enfermedad , Calor , Infecciones Estreptocócicas/prevención & control , Streptococcus iniae , Aumento de Peso
19.
Appl Microbiol Biotechnol ; 103(3): 1429-1439, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30402772

RESUMEN

The purpose of this study was to evaluate Bacillus sp. SJ-10, isolated from traditional Korean seafood, as a probiotic. Strain SJ-10 was demonstrated to be safe, on the basis of in vitro tests confirming the absence of cytotoxicity, hemolysis, and genes with toxigenic potential, and was susceptible to antibiotics. It met the probiotic prerequisites of a spore count that remained almost constant, acid and bile tolerance under simulated gastrointestinal conditions, and significant adhesion to Caco-2 cells. Moreover, SJ-10 demonstrated beneficial properties as a probiotic: broad-spectrum antimicrobial activity, hydroxyl radical, antioxidant activity, production of functional enzymes such as ß-galactosidase and phytase, and selective growth via ß-glucan fermentation. The fish-feeding trial demonstrated that olive flounder fed diets containing SJ-10 alone or in combination with ß-glucan exhibited significantly higher growth performance and pathogenic disease resistance compared with those fed diets containing ß-glucan alone, indicating that SJ-10 diets exerted a beneficial effect as an antibiotic replacer in terms of growth performance and disease resistance in olive flounder.


Asunto(s)
Bacillus/aislamiento & purificación , Agentes de Control Biológico/farmacología , Resistencia a la Enfermedad/efectos de los fármacos , Alimentos Fermentados/microbiología , Enfermedades de los Peces/prevención & control , Lenguado/crecimiento & desarrollo , Simbióticos , beta-Glucanos/farmacología , 6-Fitasa/metabolismo , Animales , Antioxidantes/farmacología , Acuicultura/métodos , Bacillus/clasificación , Células CACO-2 , Línea Celular Tumoral , Hordeum/metabolismo , Humanos , Probióticos/farmacología , Alimentos Marinos/microbiología , beta-Galactosidasa/metabolismo
20.
Fish Shellfish Immunol ; 82: 544-553, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30194054

RESUMEN

Bacillus sp. SJ-10 (BSJ-10) was identified from traditional Korean fermented fish, the previously recognized prebiotic ß-glucooligosaccharides (BGO), and their combination as a synbiotic were prepared to evaluate their individual and synergistic effects in olive flounder (Paralichthys olivaceus). Four diets (one control and three treatments) were formulated containing neither BSJ-10 nor BGO (control), 1 × 108 CFU g -1 BSJ-10 (BSJ-10), 0.1% BGO (BGO), and 1 × 108 CFU g-1 BSJ-10 + 0.1% BGO (BSJ-10 + BGO). Triplicates of 15 fish (weight 10 ± 0.25 g) were randomly allocated to the four diet groups and fed one of the diets for 8 weeks. At the end of the experiment, fish weight gain (WG), specific growth rate (SGR), feed conversion ratio, and protein efficiency ratio in BSJ-10, BGO and BSJ-10 + BGO diets were positively modulated (P < 0.05) compared with control. Specially, WG and SGR were significantly (P < 0.05) higher in BSJ-10 + BGO than that of BSJ-10 and BGO (individual component). The innate immune parameters such as respiratory burst, superoxide dismutase, and lysozyme activity (LSZ) of fish fed BSJ-10 and BSJ-10 + BGO (both groups) were significantly (P < 0.05) higher than the control. Moreover, myeloperoxidase activity (MPO) and LSZ of fish fed BSJ-10 + BGO were significantly higher compared with individual component. Compared with control, intestinal BSJ-10 content, expression of interleukin (IL)-1ß in liver and kidney, and tumor necrosis factor (TNF)-α in liver were higher in both groups, but microvillus length was increased (P < 0.05) only in BSJ-10 + BGO. During in vivo challenge experiment with Streptococcus iniae (1 × 108 CFU ml-1), survival rate of fish was significantly higher in all treatment groups versus control. Moreover, in BSJ-10 + BGO, protection against S. iniae infection and transcription of TNF-α and IL-6 in gill were significantly (P < 0.05) higher than the individual component. Collectively, an improved WG, SGR, MPO, LSZ, transcription of IL-6 and TNF-α, and cumulative survival rate against streptococcosis clearly demonstrates a synergistic outcome of diet BSJ-10 + BGO as synbiotic in olive flounder.


Asunto(s)
Bacillus/química , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de los Peces/inmunología , Peces Planos/inmunología , Inmunidad Innata/efectos de los fármacos , Oligosacáridos/administración & dosificación , Simbióticos/administración & dosificación , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Peces Planos/crecimiento & desarrollo , Peces Planos/metabolismo , Infecciones Estreptocócicas/inmunología , Streptococcus iniae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...